5 Must-Have Features in a engine block components

11 Apr.,2024

 

What is bulletproofing? In terms of high-performance engines, bulletproofing refers to increasing the power handling capacity of an engine beyond the desired power level. Depending on the design of the engine and the magnitude of the power handling increase desired, the bulletproofing process will vary. The parts and processes needed to build a Honda B20 and a Mitsubishi 4G63 to be bulletproof at 700whp are going to be different despite the fact that both engines are 2.0-liter, four cylinders with DOHC 16 valve cylinder heads. Additionally, the process and parts to bulletproof a Toyota 2JZ to support 800whp is going to be different than the parts and processes needed to allow a 2JZ to live a full life at 1,200whp. No two engine designs are created equal. Some are strong, some are weak in stock form. Hence, some engines are going to require more parts, effort and work than others to be bulletproofed at a certain power level. An engine’s cylinder strength, crankshaft support, block-to-head clamping, rotating assembly strength (crank, rods, pistons) and the level of precision of the machine work and assembly ultimately establish the power handling capabilities of the short block. By understanding these five elements, a solid plan to increase the power handling capacity of any engine can be successfully put into action.

Text By Michael Ferrara // Photos by Michael Ferrara, Richard Fong and Sami Sharaf

DSPORT Issue #161

#1. CYLINDER STRENGTH

Before the advent of alloy engine blocks, cylinders were cast-in features of the cast-iron engine block. Up until the early 90s, many Japanese OEMs looked to cast- iron blocks for forced-induction performance applications. A number of legendary engines featured cast iron blocks: Toyota’s 2JZ, Nissan’s RB26 and Mitsubishi’s 4G63. On these engines, the wall thickness of the cylinder determined the ultimate strength of the cylinder. Thicker walls have more strength and thus handle higher cylinder pressures. Nissan has offered its RB26 block in three iterations, factory, N1 and GT. The N1 offering thicker walls than the factory-issued block while the GT block offering even thicker walls than the N1. Since there are no such options for most other platforms, sleeving the block with high-strength iron or steel sleeves are required when performance levels exceed the power handling capacity of the factory cast-iron cylinders.

Nearly every engine produced since the mid-90s features an aluminum-alloy block. These blocks incorporate a cast-iron cylinder liner or a plasma-sprayed surface over the aluminum cylinder. The B-series Honda engine was among the first aluminum engine blocks to be pushed hard enough to exceed the power handling capacity of the factory cast-iron sleeve. The extreme cylinder pressures of forced induction would cause the factory sleeves to fail when peak torque output exceeded the 300 ft-lb level. The cure is simple: properly installed, high-quality aftermarket sleeves. We’ve installed Darton M.I.D sleeves in B-series Hondas and it’s proven to be bulletproof to the 1,100whp level. This particular series of sleeve also changes the design of the deck from an open to a closed design which adds support to the top of the cylinders.

Darton Sleeves offers its Modular Integrated Deck (M.I.D.) series for a number of popular applicaiions. We used these sleeves on the 2.0-liter B-series Hondas that produced over 1,000 whp.

Once installed, the Darton Sleeves MID system will transform an open-deck block to what functions as a closed deck. This provides additional stability and strength to the top of the cylinder.

There are also a number of high-performance engines that use a plasma-sprayed on surface instead of a thin-wall cast-iron liner. Honda’s H-series and F-series engines, Toyota’s 2ZZ and Nissan’s VR38DETT are some of the more popular performance engines using this technology. In these applications, the strength of the cylinder is solely dependent on the properties of the aluminum alloy and the thickness of the aluminum cylinder walls. The sprayed-on steel surface doesn’t add any real strength. Instead, this surface just serves to provide a wearable surface for the pistons and rings to ride against. Since there are no thicker-cylinder-wall variants of these engines available, sleeving is the only option once the limits of the factory cylinders are found.

L.A. Sleeves offers a variety of different high-performance sleeves. Dry sleeves which do not enter into a water jacket are typically unflanged, but some applications may also use a flange. The PROCOOL series is a wet- sleeve design for selected ultra-high performance applications. Left-UNFLANGED, Middle-FLANGED, Right-PROCOOL

#2. CRANKSHAFT SUPPORT

An engine must be able to properly support the crankshaft to avoid cracking of the block or failure of the main bearings. When an engine is highly loaded in a high- horsepower condition, the crankshaft is undergoing cycles of twisting back and forth. While a properly-fitted harmonic damper helps protect the crankshaft from these stresses, the main caps and bulkheads under the caps are seeing extreme stress. Different types of main cap designs provide different levels of performance.

A simple two-bolt main cap design without a girdle (device linking the caps to each other to prevent fore-aft movement) relies entirely on its thickness and material properties for strength. This is one area where Toyota’s 2JZ engine is limited. When power levels above 800whp are planned with this engine, a set of higher-strength, thicker steel main caps should be used in place of the factory cast-iron caps.

A Honda B16A block uses five simple two-bolt cast-iron caps to support the crankshaft.

Other engines use a girdle from the factory. The Honda B18C versus the Honda B16A provides a good example. The B18C ties its three center caps together with an aluminum girdle that ensures that these caps do not move fore and aft. Honda deemed this necessary when the stroke was increased on the B18C that sees similar RPM levels as the B16A. The non-VTEC LS block was designed for lower engine speeds. Although it features a long stroke, its factory-intended RPM level is less, so Honda decided a girdle wasn’t necessary. Mitsubishi’s 4G63 is interesting in that it started life as a two-bolt individual cap engine (6-bolt) only to later be revised with an integral girdle (7-bolt and EVO versions). Kiggly Racing offers a kit to add a girdle to early 6-bolt 4G63 engines.

The Honda B18C provides superior crankshaft support (compared to the B16A) by adding a girdle that ties the #2, #3 and #4 main caps together.

While girdles are great, there’s an even better design. The highest-strength design involves having main caps and oil pan rails integrated so that the entire lower portion of the engine splits from the top half. The Toyota 2ZZ, Mitsubishi 4B11 and Nissan VR38DETT are a few of the engines that showcase this design. This design strengthens the block and its rigidity ensures that the crankshaft supports stay in place. If you are lucky enough to be building an engine with this type of crankshaft support, it’s unlikely that it will be an issue for any power goal.

Nissan’s VR38DETT engine block is one of the newest-generation of engine blocks that provides exceptional crank support. This is thanks to main caps that are integrated with the pan and lower portion of the engine.

#3. BLOCK-TO-HEAD CLAMP

It’s no secret that import performance fans will often push engines to power levels that are double, triple or even eight times the original level. Some means of forced induction is always involves with power increases of that magnitude. While “boost” seems an easy and effective path to big power gains, these gains come with a similar increase in cylinder pressures. So if a turbo kit doubles the torque and power output of an engine, the cylinder pressures encountered will also double. While some engines have adequate head clamping with the factory head bolts to accommodate this increase in cylinder pressure, most often these higher cylinder pressures overcome the capabilities of the factory head gasket and head bolts. As a result, head gaskets fail and the cylinder head lifts away from the block. To remedy this situation, additional clamping force is needed.

To achieve additional clamping force, the aftermarket offers a solution. Higher-strength head studs made of superior materials can general be “torqued” to a higher value. This higher torque value increases the preload or clamping force on the cylinder head. ARP is among the most popular choices for this type of solution. ARP offers head studs in three different alloys: 8740, ARP2000 and Custom Age 625+ (CA625+). Whereas the tensile strength of an OEM head bolt may be in the 150-180Kpsi range, an 8740-alloy fastener will have a tensile strength of 200Kpsi. ARP2000 alloy features an even higher 220Kpsi tensile strength. For applications needing an even stronger alloy, ARP offers CA625+ alloy for select applications. The CA625+ alloy has a tensile strength in the 260-280Kpsi range. When the potential 75-to-85 percent increase in clamping force from the best CA625+ alloy isn’t enough, one can also opt to increase the size of the fastener.

Time-Sert offers a complete M11x1.5 head stud insert kit with the necessary tools and inserts included.

Any engine with an M10 head bolt is likely to lack enough clamping force when the torque output of the engine is doubled. One great example of such an engine is the Nissan KA24DE. The stock head bolts torqued to 62 ft-lb with motor oil apply under 10,000 pounds of preload. Push the torque output of this engine past 300 lb-ft of torque and those stock head bolts will have difficulty in maintaining a head gasket seal. When the head bolts are upgraded to ARP 8740 10mm head studs, torque can be increased to 70 ft-lb (using ARP lube). This torque value will deliver over 12,500 pounds of clamping force. This simple upgrade will maintain a head gasket seal even when torque output of the engine approaches the 400 lb-ft range. What if you plan on an even higher torque output from the engine? Then, you will need to consider going to a larger diameter head stud. Moving from a 10mm to 11mm head stud requires the installation of Time- Serts on every head bolt hole on the engine block. While some people just try to retap the block for the 11mm studs without using an insert, this doesn’t provide full-strength in the tap threads. The reason? The major diameter (depth of the cuts) of the original M10 tapping is larger than the minor diameter of the M11(smallest diameter where the threads have been cut). Unless the retapping is identically timed with the original tapping (something nearly impossible to accomplish), a block retapped to M11 from M10 will have a loose fit on the base of the head stud. An M11 Time-Sert insert uses a larger drill that completely removes all of the original M10 threads from the block before tapping for a thread size actually larger than M11 for the outside of the thread insert. When a KA24DE has new M11 Time-Serts installed, a set of 11mm 4G63-EVO head studs can be used. These M11 ARP head studs torqued to 80 ft-lb will provide over 13,500 pounds of clamping force. That provides enough additional clamping force for engine torque output in the 435 lb-ft range. When the ARP CA625+ 11mm 4G63-EVO head studs are used, even more clamping force is achieved. These M11 ARP CA625+ head studs torqued to 100 ft-lb will provide over 17,100 pounds of clampingforce. That provides enough additional clamping force for engine torque output in the 550+ lb-ft range.

(Top) This is a factory 10mm KA24DE head bolt. (Middle) Here is the ARP 10mm head stud in 8740 alloy for the KA24DE. (Bottom) This is the ARP 11mm CA625+ alloy head stud used for the Mitsubishi 4G63-EVO. With Time- Serts, a KA24DE block can be upgraded to accept the 11mm studs.

What about going to a higher torque level with the head studs? ARP provides its recommended torque values taking into consideration the strength of the threads in the engine block along with the factory preload. In some cases, the fastener may be capable of operation at a higher torque value (usually 10% higher on the 8740 or ARP2000 alloys and possibly up to 20% higher on the CA625+ alloys). However, going beyond the recommended fastener torque values risks failure of the threads in the block. If there is a need to go beyond the recommended torque value, it’s imperative that an angle-torque method be used to establish equal fastener preload. Even when the angle-torque method is used at a recommended fastener torque target, it’s possible to achieve an additional 10 to 15 percent more total clamping force. We’ll outline this process in an upcoming article, so stay tuned for this technique.

A precision honing process requires a “honing” or “torque” plate. These plates replicate the distortion of the cylinder once the head is bolted in place. Use the same studs, torque spec and head gasket as final.

#4. ROTATING ASSEMBLY STRENGTH

(Rods, Pistons, Crank)

When the boost is cranked up or the redline is raised, the stresses and strains on the entire rotating assembly are also increased. The factory connecting rod is likely to fail first. This happens on everything from a Honda D16 to a Nissan VR38DETT. Of all of the rotating assembly, the connecting rods have one of the largest challenges. Increases in cylinder pressure increase the compressive forces on the rod while increases in engine speed not only increase the compressive forces at BDC, they also increase the tensile forces as the engine hits TDC. Aftermarket forged connecting rods use superior materials and superior fasteners to survive this abuse. In some cases, an aftermarket rod manufacturer may offer a few different rod designs that are designed to support different power levels. The less massive lighter rods would be optimized for the lower power levels, while the heavier rods would be optimized for the higher power levels. A rod manufacturer may use larger rod bolts or stronger alloy bolts on the higher- horsepower rated rods.

The rod bolts are among the most highly stressed components in an engine. Always get the best quality rod bolts that your budget allows and set the rod bolt preload with a stretch gauge.

If rod failure is not encountered first, you can put money on the pistons failing. It’s a long-standing joke that the factory pistons in Subaru EJ engines are cracked when new. In reality, these pistons are simply not strong enough to handle the additional power that can easily be extracted from the EJ engines. A high-quality, high- strength piston will use a superior-strength material. For most pistons, this is a very-tough 2618-alloy aluminum. The alloy can take a lot of abuse, but it does tend to have a higher rate of expansion than the other popular piston alloy, 4032 aluminum. The 4032-alloy features a higher silicon content. Although this silicon reduces the toughness of the piston, it also reduces the thermal expansion of the piston while providing superior stability over time. If a 4032-alloy piston will meet the power demands, do not be reluctant to use it.

The least likely component in the rotating assembly to fail in most engines is the crankshaft. Modern OEM crankshafts found in Japanese engines are nearly all forged of extremely good material. For example, we’ve made over 1,000whp on a race-prepped Honda LS crankshaft. In most cases, an aftermarket crankshaft isn’t going to be needed to bulletproof an engine. Instead, the aftermarket crankshaft is going to be the right choice when a stroker crank is desired. Aftermarket cranks can also be a great solution when it is impossible to find a factory crankshaft in excellent condition.

Sidebar: Power versus Torque

Displacement, engine speed and cylinder pressure are the three factors that determine the power output of an engine. Increase any of these three without decreasing the other two, and more power will be realized. It’s important to make a proper distinction between power and torque. While enthusiasts always prefer to reference power figures, the increase of the specific torque output of an engine is far more indicative of the additional stress on the engine block. While the increase in the peak engine speed (redline) directly plays into the strength of the rotating assembly.

The term “specific torque output” is different than torque output in that the “specific” term means that the engine’s displacement is a factor. The specific torque output of an engine is measured in ft-lbs of torque per liter. For a naturally-aspirated engine, generating 100 lb-ft of torque per liter is a very good accomplishment. So let’s say you start with a 2.0-liter engine capable of producing 200 lb-ft of peak torque. If the engine produces this torque at 5,250RPM, it will be making 200 horsepower. If a different engine produces this torque at 7,875RPM, it will be producing 300 horsepower. While the second engine produces 50-percent more power, the peak cylinder pressures between the two engines would be nearly identical (likely a few percent higher in the second engine as additional friction would need to be overcome at the higher RPM). However, if forced induction is added to an engine and the specific torque output is doubled, the peak cylinder pressures will also double. This increase in cylinder pressure is what can cause head fasteners to stretch and cylinders to crack.

As for increasing the peak engine speeds (redline) of an engine combination to make more power, the additional stresses and strains are mainly bestowed upon the connecting rods, pistons and crankshaft. Increasing the redline from 7,000 to 9,000RPM (a 28.6-percent increase) increases the stress on the connecting rod by 65 percent.

#5. PRECISION MACHINE WORK & ASSEMBLY

Precision machine work and proper assembly of an engine are critical to its performance, efficiency and longevity. Cylinders need to be as perfectly round as possible. Decks need to be as flat as possible with a smooth finish. Main journals need to be on the same axis with matched diameters. When the tolerances on bores and the flatness of surfaces can be reduced, then the clearances of the engine can sometimes be safely reduced.

While a manufacturer may state a certain tolerance for a crankshaft, the reality is the straighter, the better. A crankshaft with a runoff of 0.001” is going to require 0.0005” more bearing clearance than a crankshaft with half that runout (0.0005”). By setting this clearance on the tighter side with a straighter crankshaft, all of the main bearings are able to support more load. On the high-horsepower builds in our Club DSPORT machine shop, we’ll select a crankshaft with less than 0.001” of runout (preferably under 0.0005”). Then we will precision vertical CNC line bore the engine block. This process also reduces the amount of clearance needed by ensuring that all of the main journals are perfectly centered on the same axis. Some new and used blocks may be as much as 0.0015” from one main journal to another main journal.

Most issues with sleeved blocks are the result of improper machining. A CNC mill, the proper tools, the right operator and taking enough time are requirements for a trouble-free installation.

Making the cylinder perfectly round, taper free and with a proper finish is the goal of the cylinder honing process. While most machine shops will crank out a 4-cylinder hone in under an hour, we’ve had a four cylinder block in the machine for an entire day to reach the ultimate level of precision possible. Of course, a proper “torque plate” is a must to simulate the exact distortion that will occur once the head is torqued into place. Most OEM manufacturers are able to achieve a very round and taper free bore in the block. However, they don’t use a torque plate in the process. As a result, once the cylinder head is bolted in place, distortion of the cylinder bore occurs. We’ve seen a factory-honed cylinder have nearly 0.002” in taper and a like amount in out of roundness. A precision honing process can get taper and out-of-roundness to 1/10th of that level. These bores are then capable of running at tighter piston-to-bore clearances as the localized tight spots are removed from the cylinder. This allows an engine to run quieter and potentially deliver better ring seal for increased performance and efficiency. If the machine shop offers a profilometer service too, the finish in each bore can be optimized for superior sealing, cylinder wear and oil consumption. Unfortunately, most machine shops still rely on visual inspection and a non-optimized procedure of X number of strokes with an X-type stone at a certain amount of load. Since the characteristics of the bore material can vary from cylinder to cylinder in the same block, the only way to have a like finish on each cylinder is to measure the finish with a profilometer and to take whatever steps necessary to reach the targets.

As for making surfaces flat, surface grinding or lapping is often the best method. Unfortunately, many machine shops do not have the proper equipment to deliver ultra-smooth and ultra-flat surfaces. The cylinder deck surface and the cylinder head will deliver the best seal with a multi-layer-steel (MLS) when as flat and smooth as possible. The head gasket seal will also be optimized when an angle-torque method is used.

The Bulletproof Bottom Line

To make a one-run or one-pull engine that hits a big power number isn’t hard. Enough boost, fuel and spark and power will be made. Designing and building an engine to survive at a certain power level during a certain type of usage is a real challenge. The right parts and processes are the key to success. While we now have a great understanding of what it takes to get the bottom of the engine to spec, it only makes sense that we explore the top-end engine upgrades needed to bulletproof the remainder of the engine. Stay tuned.

 

Your car's engine is the heart of its performance, and upgrading its internals can unlock a whole new level of power and efficiency. Engine internals refer to the essential components within the engine that directly contribute to its operation and performance. From pistons and crankshafts to camshafts and cylinder heads, each part plays a crucial role in the combustion process and overall engine efficiency.

In this comprehensive guide, we will delve into the world of engine internals and explore the benefits of upgrading these components. Whether you're a passionate car enthusiast looking to maximize performance on the track or a driver seeking improved everyday driving experience, understanding and enhancing your engine internals can make a significant difference.

By upgrading engine internals, you can achieve increased horsepower, torque, and overall engine responsiveness. These modifications can improve acceleration, throttle response, and even fuel efficiency. However, it's important to note that modifying engine internals requires careful consideration and understanding of the components involved. Proper research, planning, and installation are crucial to ensure optimal results and long-term reliability.

Throughout this guide, we will explore each aspect of engine internals, including pistons, connecting rods, crankshafts, camshafts, cylinder heads, and the engine block. We'll discuss the purpose and function of each component, the available upgrade options, and the considerations to keep in mind when selecting and installing upgraded parts.

Whether you're a seasoned car enthusiast or just starting your journey into engine upgrades, this guide will provide you with valuable insights and practical knowledge to make informed decisions. Remember, optimizing your engine internals is an investment in both performance and reliability, so let's dive in and discover the world of engine internals upgrades.

Understanding Engine Internals

To fully comprehend engine internals and their impact on performance, it's essential to explore the individual components that make up the heart of the engine. Here are the key engine internals you need to understand:

Pistons and Piston Rings

Pistons are cylindrical components that move up and down within the engine cylinders. They play a critical role in the combustion process by compressing the air-fuel mixture and transferring the force generated from combustion to the crankshaft. Piston rings seal the combustion chamber and prevent the mixture from leaking into the crankcase.

Connecting Rods

Connecting rods link the pistons to the crankshaft and convert the reciprocating motion of the pistons into rotational motion. They are subjected to tremendous forces and must be strong and durable. Upgraded connecting rods can handle higher levels of power and torque, reducing the risk of failure under demanding conditions.

Crankshafts

The crankshaft is responsible for converting the linear motion of the pistons and connecting rods into rotational motion. It transfers power from the combustion process to the transmission, which ultimately propels the vehicle. Upgraded crankshafts are designed to handle increased power and offer improved strength and reliability.

Camshafts

Camshafts control the opening and closing of the engine's valves, determining the timing and duration of the valve events. They play a vital role in optimizing engine performance, including power delivery and efficiency. Upgraded camshafts can offer improved lift, duration, and overlap, leading to enhanced horsepower and torque characteristics.

Valvetrain Components

The valvetrain consists of various components, including valves, valve springs, and rocker arms, that work in harmony with the camshafts. Valves regulate the intake and exhaust of the air-fuel mixture, while valve springs ensure proper valve operation. Upgraded valvetrain components can provide increased lift and stability, allowing for higher engine speeds and improved performance.

Cylinder Heads

Cylinder heads sit on top of the engine block and contain the combustion chambers, valves, and ports. They play a crucial role in optimizing airflow and fuel mixture combustion. Upgraded cylinder heads can feature improved port design, larger valves, and optimized combustion chamber shape, resulting in enhanced power and efficiency.

Engine Block

The engine block forms the foundation of the engine and houses the cylinders, crankshaft, and other internal components. It provides structural integrity and stability. Upgraded engine blocks may offer increased strength, improved cooling, and the potential for increased displacement for higher power output.

Understanding these engine internals and their interactions is crucial when considering upgrades for improved performance and reliability. Each component plays a specific role in the engine's operation, and upgrading them can lead to significant gains in power, torque, and overall engine efficiency. In the following sections, we will delve deeper into each component, exploring upgrade options and their impact on performance.

Upgrading Pistons and Piston Rings

When it comes to upgrading engine internals, pistons and piston rings are essential components that can have a significant impact on performance. Let's explore the world of pistons and piston rings and the considerations for upgrading them:

Types of Pistons and their Features

Cast Pistons

Cast pistons are the most common type and are made by pouring molten aluminum into a mold. They are cost-effective and suitable for most applications but may have limitations in terms of strength and thermal efficiency.

Forged Pistons

Forged pistons are created by subjecting aluminum alloy to intense pressure and heat, resulting in a denser and stronger structure. They are highly durable and capable of handling higher levels of power and torque.

Billet Pistons

Billet pistons are machined from a solid block of aluminum, making them incredibly strong and precise. They are typically used in high-performance and racing applications, where extreme strength and weight reduction are critical.

Piston Materials and Coatings

Aluminum Pistons

Aluminum is the most common material for pistons due to its lightweight and excellent thermal conductivity. Upgraded pistons may feature advanced alloys for improved strength and durability.

Coatings

Piston coatings, such as ceramic or thermal barrier coatings, can provide benefits such as reduced friction, improved heat dissipation, and increased wear resistance. These coatings can contribute to enhanced performance and longevity.

Performance Piston Ring Sets

Piston rings are responsible for sealing the combustion chamber, regulating oil consumption, and transferring heat from the piston to the cylinder wall. Upgrading to performance piston ring sets can provide benefits such as reduced friction, improved sealing, and increased durability. Consider factors such as ring material, design, and gap specifications when choosing the right set for your engine.

Installation Tips and Considerations

Proper Measurements

When upgrading pistons and piston rings, accurate measurements of bore diameter, piston-to-wall clearance, and ring end gaps are crucial to ensure proper fitment and performance.

Cylinder Honing

It is essential to properly hone the cylinder walls to the appropriate surface finish to promote proper ring break-in and optimal performance.

Assembly Lubrication

Apply assembly lubricant to the piston skirts, rings, and cylinder walls during installation to reduce friction and prevent damage during initial startup.

Follow Manufacturer Guidelines

Always refer to the manufacturer's instructions and specifications for proper installation procedures, torque values, and any specific recommendations.

Upgrading pistons and piston rings can offer improved power, durability, and overall engine performance. Consider factors such as your engine's power goals, intended usage, and budget when selecting the appropriate components. In the next section, we will explore upgrading connecting rods and their impact on engine performance.

Enhancing Connecting Rods

The connecting rods play a critical role in transferring the reciprocating motion of the pistons to the rotational motion of the crankshaft. Upgrading connecting rods can enhance engine performance, durability, and the ability to handle increased power. Let's delve into the world of connecting rods and the factors to consider when enhancing them:

Upgraded Connecting Rods

Forged Connecting Rods

Forged connecting rods are crafted from high-strength steel or aluminum alloys using a forging process. This manufacturing method results in a dense and robust structure that can withstand higher loads and RPMs. Forged connecting rods are a popular choice for high-performance and racing applications.

Billet Connecting Rods

Billet connecting rods are machined from a solid block of steel or aluminum. They offer exceptional strength and rigidity due to their monolithic construction. Billet connecting rods are often employed in extreme-performance engines where maximum strength and weight reduction are vital.

Forged vs. Billet Connecting Rods

Forged Connecting Rods

With their grain structure aligned along the primary stress points, forged connecting rods are known for their excellent fatigue resistance. They can handle high power levels and endure repeated load cycles without compromising structural integrity.

Billet Connecting Rods

Billet connecting rods offer unparalleled strength and precision due to their one-piece construction. They are particularly well-suited for engines subjected to extreme loads and high RPMs.

Rod Length and Design Considerations

Rod Length

The length of the connecting rod affects the engine's stroke and the dwell time at top dead center (TDC). Longer rods can reduce piston side-loading, improve combustion efficiency, and provide better mechanical advantage.

Design Features

Connecting rod design features, such as H-beam, I-beam, or X-beam configurations, can influence strength, weight, and resistance to bending or twisting forces. These factors should be considered based on the specific requirements of the engine and its intended use.

Connecting Rod Bearing Selection

Connecting rod bearings provide a critical interface between the connecting rod and the crankshaft, ensuring smooth rotational motion. When upgrading connecting rods, it is essential to select bearings that match the specifications and clearance requirements of the new rods. Factors to consider include bearing material, clearance specifications, and compatibility with the crankshaft journal surface.

Enhancing connecting rods can significantly improve engine performance, especially in high-stress applications. By upgrading to stronger and lighter rods, you can enhance the engine's ability to handle increased power and RPMs. In the next section, we will explore crankshafts and their role in engine performance and durability.

Optimizing Crankshafts

The crankshaft is the backbone of the engine, converting the reciprocating motion of the pistons into rotational motion. Upgrading and optimizing the crankshaft can have a significant impact on engine performance, durability, and smooth operation. Let's delve into the world of crankshafts and explore various ways to optimize them for enhanced engine performance:

Performance Crankshaft Options

Forged Crankshafts

Forged crankshafts are crafted from high-strength steel and undergo a forging process that aligns the grain structure for superior strength. They can handle increased power and torque output and are commonly used in high-performance and racing applications.

Billet Crankshafts

Billet crankshafts are machined from a solid block of high-quality steel. They offer exceptional strength, precision, and customization options. Billet crankshafts are often employed in extreme-performance engines where maximum strength and reliability are paramount.

Forged vs. Billet Crankshafts

Forged Crankshafts

Forged crankshafts are known for their exceptional strength and resistance to fatigue. They are capable of withstanding higher loads and RPMs, making them suitable for high-performance applications. The forging process enhances the grain structure, resulting in improved durability and reliability.

Billet Crankshafts

Billet crankshafts are machined from a solid piece of steel, providing excellent strength and precision. Their monolithic construction allows for more intricate designs and customization options. Billet crankshafts are often chosen for extreme-performance engines, where strength and lightweight characteristics are critical.

Stroke and Offset Considerations

Stroke

The stroke length refers to the distance the piston travels from top dead center (TDC) to bottom dead center (BDC). Altering the stroke length can change an engine's displacement and affect power characteristics. Longer strokes typically increase torque output, while shorter strokes favor higher RPM potential.

Offset

Crankshaft offset refers to the distance between the crankshaft's main journal centerline and the centerline of the connecting rod journal. Offset cranks can influence piston dwell time at TDC and improve combustion efficiency. However, offsetting the crankshaft also affects rod angle and side-loading, requiring careful consideration during the engine build.

Balancing and Blueprinting the Crankshaft

Balancing

Balancing the crankshaft is crucial for smooth engine operation and reduced vibration. Balancing the crankshaft involves equalizing the weight distribution to minimize vibrations and ensure smooth rotation. This process typically includes counterweights and precise machining to achieve optimal balance.

Blueprinting

Blueprinting the crankshaft involves meticulous measurements and machining to ensure precise tolerances and clearances. This process enhances overall engine performance, reduces friction, and maximizes power output. Blueprinting involves checking journal sizes, runout, and aligning the main and rod bearing bores for optimal performance.

Properly optimizing the crankshaft is essential for maximizing engine performance, reducing stress on engine components, and increasing reliability. It's crucial to consult with knowledgeable engine builders or professionals when selecting and optimizing crankshafts to ensure compatibility with other engine components and achieve the desired performance goals.

Camshaft Upgrades for Increased Performance

Camshafts are a critical component of an engine's valvetrain system, responsible for controlling the opening and closing of the intake and exhaust valves. Upgrading the camshaft can have a significant impact on engine performance, altering power delivery, torque characteristics, and overall efficiency. In this section, we will delve deeper into camshaft upgrades, exploring the different types of camshafts, duration, lift, timing considerations, camshaft materials and coatings, and valve train upgrades necessary for optimal performance.

Types of Camshafts

Hydraulic Camshafts

Hydraulic camshafts are the most common type found in street and performance engines. They utilize hydraulic lifters that automatically adjust for valve clearance, eliminating the need for periodic adjustment. Hydraulic camshafts are known for their smooth operation, quietness, and ease of maintenance. They are suitable for a wide range of applications, offering good low-end torque and drivability.

Solid Camshafts

Solid camshafts are favored in high-performance and racing engines due to their ability to provide precise valve control and high RPM potential. Unlike hydraulic camshafts, solid camshafts require manual valve lash adjustment to maintain optimal performance. Solid camshafts are known for their aggressive profiles, increased lift, and extended RPM range. They offer improved throttle response and top-end power but may sacrifice some low-end torque and idle quality.

Roller Camshafts

Roller camshafts combine the benefits of both hydraulic and solid camshafts. They feature small wheels or "rollers" on the cam lobes that come into contact with the lifters, reducing friction and wear. Roller camshafts provide improved valve lift, reduced frictional losses, and increased durability compared to other camshaft types. They are commonly used in performance engines where longevity and high RPM operation are desired.

Duration, Lift, and Timing Considerations

Duration

Camshaft duration refers to the length of time the valves remain open during each combustion cycle. Duration is measured in degrees of crankshaft rotation and can be divided into two components: intake duration and exhaust duration. Longer duration camshafts keep the valves open for a greater period, allowing more air and fuel mixture to enter the combustion chamber or exhaust gases to exit. Longer duration typically results in increased power at higher RPM but may sacrifice low-end torque.

Lift

Camshaft lift refers to the distance the valve opens off its seat during operation. Higher lift camshafts allow more air and fuel mixture to enter the combustion chamber or exhaust gases to exit, improving overall engine performance. Lift is typically measured in inches or millimeters and should be selected based on the engine's specific requirements and intended use.

Timing

Camshaft timing refers to the relationship between the crankshaft and camshaft, determining when the valves open and close in relation to the piston position. Proper timing is crucial for achieving optimal engine performance and efficiency. Advancing or retarding the camshaft timing can alter power delivery characteristics, torque curve, and overall performance. Precise timing adjustments are typically made during the installation and tuning process.

Camshaft Materials and Coatings

Camshaft Materials

Camshafts are commonly made from cast iron, steel alloys, or billet materials. Each material has its own characteristics, such as strength, durability, and weight. Steel alloys and billet camshafts are popular choices for high-performance applications due to their increased strength and ability to withstand high stress and RPM levels.

Camshaft Coatings

Camshaft coatings are applied to enhance durability, reduce friction, and improve performance. Some common coatings include nitride, which provides excellent wear resistance, and DLC (Diamond-Like Carbon), known for its low friction properties. Coatings can improve the overall lifespan of the camshaft and reduce the need for frequent replacements.

Valve Train Upgrades for Camshaft Compatibility

When upgrading the camshaft, it is essential to consider the entire valvetrain system to ensure compatibility and optimize performance. The following components may require upgrades or adjustments:

Valve Springs: Upgrading valve springs is often necessary to match the increased lift and duration of a high-performance camshaft. Stiffer valve springs are required to prevent valve float at high RPM and ensure proper valve control.

Retainers and Keepers: Upgraded retainers and keepers may be necessary to accommodate the increased lift and stress caused by a high-performance camshaft.

Lifters: Hydraulic lifters are commonly used with hydraulic camshafts, while solid lifters are used with solid camshafts. Roller lifters are often used with roller camshafts. Choosing the appropriate lifters that match the camshaft type is crucial for proper operation and longevity.

Pushrods: High-performance camshafts may require stronger and more rigid pushrods to handle the increased loads and prevent deflection.

Rocker Arms: Upgrading to performance rocker arms can improve valvetrain stability and durability, especially when using high-lift camshafts.

By understanding the different types of camshafts, considering duration, lift, timing factors, selecting suitable materials and coatings, and addressing valve train upgrades, you can effectively enhance the performance of your engine through camshaft upgrades. Remember to consult with experienced engine builders or professionals to ensure proper selection, installation, and tuning for optimal results.

Cylinder Head Modifications

Cylinder heads play a crucial role in the overall performance of an engine, dictating the airflow, combustion efficiency, and power output. By upgrading and modifying the cylinder heads, you can unleash the true potential of your engine. In this section, we will delve into various cylinder head modifications, including porting and polishing, valve modifications, combustion chamber modifications, and upgrading valve springs, retainers, and lifters.

Porting and Polishing

Porting and polishing involve reshaping and smoothing the intake and exhaust ports of the cylinder head to optimize airflow. By carefully removing imperfections, rough surfaces, and restrictions, porting and polishing can increase the flow of air and fuel mixture into the combustion chamber and improve exhaust gas evacuation. This modification enhances cylinder filling, combustion efficiency, and overall engine performance.

Intake Porting

Intake porting focuses on increasing the volume and velocity of the incoming air and fuel mixture. This can be achieved by enlarging and reshaping the intake ports, removing any obstructions, and optimizing the port shape for better airflow dynamics.

Exhaust Porting

Exhaust porting aims to improve the evacuation of exhaust gases from the combustion chamber. By enlarging and reshaping the exhaust ports, the exhaust gas flow can be optimized, reducing backpressure and enhancing engine breathing.

Polishing

After porting, the ports and the combustion chamber surfaces can be carefully polished to further smooth out any rough areas. Polishing helps minimize turbulence, improve airflow, and reduce the likelihood of carbon buildup.

Valve Modifications

Valve Size: Upgrading to larger valves can increase airflow and improve cylinder filling, especially in high-performance applications. However, larger valves may require modifications to the valve seats, valve guides, and other components to ensure proper fit and operation.

Valve Shape: Modifying the shape of the valves, such as a radius or tulip profile, can improve flow characteristics and enhance combustion efficiency. Valve profiling should be done in conjunction with porting and polishing to ensure optimal airflow throughout the entire intake and exhaust system.

Valve Material: Upgrading to performance valves made from materials like stainless steel or titanium can offer increased strength, durability, and heat resistance. These materials can withstand higher operating temperatures and reduce the likelihood of valve deformation or failure.

Combustion Chamber Modifications

Modifying the combustion chamber can optimize fuel atomization, flame propagation, and combustion efficiency. The following modifications can be performed:

Combustion Chamber Shape: Altering the shape of the combustion chamber can promote better airflow, fuel distribution, and flame propagation. Bowl shaping, squish area modifications, and valve seat reshaping are common techniques to improve combustion efficiency.

Compression Ratio Modifications: Changing the combustion chamber volume or piston design can alter the compression ratio. Adjusting the compression ratio can optimize performance for specific applications, such as improving low-end torque or increasing high-end power.

Upgraded Valve Springs, Retainers, and Lifters

When making significant modifications to the camshaft or valve train, upgrading valve springs, retainers, and lifters is often necessary. High-performance camshafts may require stiffer valve springs to prevent valve float at high RPM, ensure proper valve control, and avoid potential valve-train damage. Upgraded retainers and lifters can also provide increased durability, reduced deflection, and improved valvetrain stability.

Properly modifying and upgrading cylinder heads is a complex process that requires precision, knowledge, and experience. It is crucial to consult with experienced engine builders or professionals who can analyze your specific engine setup, goals, and performance requirements to provide tailored recommendations and perform the necessary modifications for optimal results.

Engine Block Enhancements

The engine block serves as the foundation of the entire engine, housing various crucial components and providing structural integrity. Enhancing the engine block can significantly impact engine performance, durability, and power potential. In this section, we will explore different engine block enhancements, including reinforcement techniques, cylinder boring and honing, main studs and girdles, and the use of cylinder sleeves and Darton sleeves.

Engine Block Reinforcement

Block Deck Reinforcement: Reinforcing the block deck involves strengthening the top surface of the engine block where the cylinder head attaches. This can be achieved through techniques such as block decking, which involves machining the block deck to ensure it is perfectly flat and provides a stable surface for the cylinder head gasket.

Main Cap Support: Installing main cap supports or girdles can help increase the rigidity and strength of the engine block. These aftermarket components help distribute the load and reduce block flexing, especially in high-performance applications with increased power levels and stress on the bottom end.

Cylinder Boring and Honing

Cylinder Boring: Cylinder boring is a process of enlarging the cylinder bores to accommodate larger pistons or to remove any imperfections or wear. This process involves carefully machining the cylinder walls to achieve the desired diameter and surface finish for optimal piston-to-wall clearance and proper sealing.

Cylinder Honing: Honing involves creating a crosshatch pattern on the cylinder walls using specialized honing tools. This pattern improves oil retention, promotes piston ring seating, and facilitates proper lubrication. Honing also removes any remaining machining marks or glaze, ensuring a smooth and uniform surface.

Main Studs and Girdles

Main Studs: Upgrading to high-strength main studs provides improved clamping force between the main caps and the engine block. This helps prevent main cap movement, maintains consistent bearing clearances, and enhances overall bottom-end stability. Main studs are particularly beneficial in high-performance applications with increased cylinder pressures and RPM.

Girdles: Main girdles or main caps girdles are additional structural components that reinforce the main bearing area of the engine block. These girdles provide additional support and rigidity, reducing block flex and minimizing the risk of main bearing cap movement. Girdles are commonly used in high-performance and racing applications to ensure maximum durability and reliability.

Cylinder Sleeves and Darton Sleeves

Cylinder Sleeves

Cylinder sleeves are cylindrical liners inserted into the cylinder bores to provide a new surface for the piston to move in. They can be used to repair damaged or worn cylinders or to increase the bore size for performance purposes. Sleeving can strengthen the block and allow for larger piston sizes and increased displacement.

Darton Sleeves

Darton sleeves are a specific type of cylinder sleeves known for their strength and durability. They are commonly used in high-performance and forced induction applications where extreme cylinder pressures and temperatures are present. Darton sleeves provide excellent support for the cylinder walls, reduce cylinder distortion, and improve overall engine reliability.

Enhancing the engine block requires careful planning, precision machining, and the use of high-quality components. It is essential to consult with knowledgeable engine builders or professionals who can guide you in selecting the appropriate enhancements for your specific engine setup, power goals, and performance requirements.

Balancing and Blueprinting the Engine

Achieving optimal balance and precision in an engine is crucial for maximizing performance, reducing vibrations, and improving overall reliability. Balancing and blueprinting the engine involves meticulous measurement, adjustment, and fine-tuning of various internal components to ensure harmonious operation. In this section, we will explore the importance of engine balancing, the process of blueprinting an engine, as well as the role of harmonic balancers, crankshaft dampers, flywheel, and flexplate balancing.

Importance of Engine Balancing

Balance and Vibration

Engine balancing is the process of equalizing the weight and distribution of rotating and reciprocating components to minimize vibrations and ensure smooth operation. Balanced engines experience reduced vibrations, which improves driver comfort, reduces stress on engine components, and enhances overall performance.

Internal Component Wear

An unbalanced engine can lead to excessive wear on internal components, such as crankshafts, bearings, pistons, and connecting rods. Proper balancing helps distribute loads evenly, reducing the strain on these components and extending their lifespan.

Blueprinting the Engine for Maximum Efficiency

Measuring and Machining 

Blueprinting an engine involves carefully measuring and machining critical components to precise tolerances and specifications. This process ensures consistency and uniformity throughout the engine, resulting in optimal performance and efficiency.

Clearance and Fitment

Blueprinting includes checking and adjusting critical clearances, such as piston-to-wall clearance, bearing clearances, valve-to-piston clearance, and valve lash. These adjustments help achieve optimal fitment and operation, minimizing friction and maximizing power output.

Harmonic Balancers and Crankshaft Dampers

Harmonic Balancers

Harmonic balancers, also known as vibration dampers or crankshaft pulleys, help reduce torsional vibrations and maintain the stability of the crankshaft. They consist of a metal hub and a rubber or elastomer ring that absorbs and dissipates vibrations generated by the engine's reciprocating and rotating components.

Crankshaft Dampers

Crankshaft dampers are additional components used to further reduce torsional vibrations in the crankshaft. They are typically integrated into the front section of the crankshaft and work in conjunction with the harmonic balancer to minimize vibration-induced stress on the crankshaft and other engine parts.

Flywheel and Flexplate Balancing

Flywheel Balancing

The flywheel, in manual transmission-equipped engines, or flexplate, in automatic transmission-equipped engines, plays a crucial role in the engine's rotating assembly. Balancing the flywheel or flexplate ensures smooth engine operation, prevents vibrations, and maintains proper clutch engagement or torque converter operation.

Professional Balancing Services

Achieving precise balance in the flywheel or flexplate often requires professional balancing services. These services involve accurately measuring and removing material from specific areas of the component to achieve the desired balance.

Balancing and blueprinting an engine is a meticulous process that requires expertise and specialized equipment. It is recommended to seek the assistance of experienced engine builders or professionals who can accurately measure, adjust, and balance the internal components to achieve optimal performance and reliability.

Engine Internals Upgrades for Forced Induction

Forced induction, whether through turbocharging or supercharging, introduces additional stresses and demands on engine internals. To ensure the engine can handle the increased power and boost pressure, specific upgrades to key components are necessary. In this section, we will delve into the considerations for turbocharged and supercharged applications, as well as explore the upgrades required for pistons, connecting rods, camshafts, and cylinder heads in boosted engines.

Considerations for Turbocharged and Supercharged Applications

Increased Cylinder Pressure

Forced induction systems generate higher cylinder pressures, leading to increased stress on the engine internals. It is crucial to choose components capable of withstanding the added pressure and heat generated by forced induction.

Heat Management

Turbochargers and superchargers generate significant heat, which can affect engine performance and reliability. Upgrades that improve heat dissipation and management, such as enhanced cooling systems and thermal barrier coatings, are essential for maintaining optimal operating conditions.

Piston and Connecting Rod Upgrades

Forged Pistons

Forged pistons offer superior strength and durability compared to stock cast pistons. They are capable of withstanding higher combustion pressures and temperatures, making them ideal for forced induction applications.

Upgraded Piston Rings

Upgraded piston rings with enhanced sealing capabilities are crucial for maintaining proper compression and preventing boost pressure from leaking into the crankcase.

High-Strength Connecting Rods

Upgraded connecting rods made from stronger materials, such as forged steel or titanium, are necessary to handle the increased forces exerted on the rods due to forced induction.

Camshaft Selection for Forced Induction

Duration and Lift Considerations

Camshafts designed for forced induction applications often feature different duration and lift profiles to optimize power delivery within the boosted range. These camshafts help maximize airflow and ensure proper valve timing for efficient combustion.

Valve Overlap

Camshafts with reduced valve overlap can prevent boost pressure from escaping through the exhaust during the intake stroke, improving overall efficiency and power output.

Cylinder Head Modifications for Boosted Engines

Increased Flow Capacity

Cylinder head modifications, such as porting and polishing, can improve airflow into and out of the combustion chamber, allowing for better intake and exhaust gas flow. This enhancement helps maximize power potential in forced induction engines.

Reinforced Valvetrain Components

Upgrading to stronger valve springs, retainers, and lifters is essential to prevent valve float and maintain proper valve control under high boost conditions.

It is important to consult with experienced engine builders or performance shops specializing in forced induction applications to ensure the selection and installation of the appropriate upgrades. Properly matched components and modifications tailored to forced induction engines will enhance both power output and engine reliability.

Engine Tuning and Management

Achieving the full potential of upgraded engine internals requires precise tuning and management to optimize performance and ensure reliability. Engine tuning involves adjusting various parameters and settings to maximize power output, fuel efficiency, and drivability. In this section, we will discuss the key aspects of engine tuning and management, including fueling, ignition timing, air/fuel ratio, and the role of engine management systems.

Fueling and Ignition Timing

Fuel Injector Upgrades

Upgraded fuel injectors with higher flow rates are often necessary to provide adequate fuel delivery for increased power levels. Proper sizing and calibration of injectors ensure optimal fueling under various operating conditions.

Ignition Timing Optimization

Adjusting the ignition timing to suit the specific characteristics of the engine and fuel being used is crucial for maximizing power and preventing detonation. Advanced ignition timing control systems can provide precise timing adjustments for different load and rpm ranges.

Air/Fuel Ratio

Wideband Oxygen Sensors

Installing wideband oxygen sensors allows for accurate monitoring and adjustment of the air/fuel ratio. Maintaining the proper stoichiometric ratio ensures efficient combustion and avoids running too rich or too lean, which can adversely affect performance and engine longevity.

Electronic Fuel Management

Upgraded engine management systems with advanced fuel control capabilities, such as programmable ECUs (Engine Control Units), enable precise tuning of the air/fuel mixture for optimum performance. These systems offer greater flexibility and customization compared to stock ECUs.

Engine Management Systems

Standalone Engine Management Systems

Standalone engine management systems offer comprehensive control over engine parameters, allowing for precise tuning and customization. These systems provide advanced features, including data logging, boost control, launch control, and traction control, to optimize engine performance.

Piggyback Engine Management System

Piggyback systems work in conjunction with the stock ECU, intercepting and modifying signals to achieve desired engine performance. They offer flexibility for tuning without completely replacing the factory ECU.

Dyno Tuning

Dyno tuning involves running the engine on a dynamometer, which allows for real-time measurement and adjustment of engine parameters. This tuning method provides accurate and controlled testing conditions, resulting in optimized performance.

Working with an experienced tuner who understands the intricacies of engine internals and forced induction systems is crucial for achieving the best results. Custom tuning involves tailoring the engine calibration to the specific modifications and performance goals of the vehicle.

Pedal Commander

Pedal Commander is a device designed to optimize throttle response and improve performance. While it is not an engine tuning solution, it will let you tune your throttle response. The Pedal Commander offers precise control over throttle sensitivity, allowing drivers to tailor the throttle response to their preferences and driving style. With its 2-year warranty and a 30-day money-back guarantee, the Pedal Commander is a reliable and versatile option for those looking to enhance their driving experience.

Incorporating engine internals upgrades and utilizing performance-enhancing devices like the Pedal Commander can transform your vehicle into a high-performance machine, delivering exhilarating driving experiences and unmatched power on the road or track.

Remember to prioritize proper installation, regular maintenance, and professional tuning to ensure the longevity and reliability of your upgraded engine. By following best practices and working with knowledgeable professionals, you can enjoy the benefits of enhanced performance while maintaining the integrity of your engine.

Whether you are a beginner starting your journey into performance modifications or an experienced enthusiast seeking to push the limits of your vehicle, upgrading engine internals opens up a world of possibilities. Embrace the power, unleash the potential, and experience the thrill of a high-performance engine.

5 Must-Have Features in a engine block components

Maximize Your Engine's Power: A Complete Guide to Engine Internals and Performance Enhancements